Genetic Disorder Notes Week 34

Any disorder that is caused by malfunctions in genes that are passed on or with the chromosomes. Examples: Sickle-cell Anemia Tay -Sachs Hemophilia Albinism Down's Syndrome **D**warfism

Sickle-Cell Anemia Caused by a recessive allele It is a homozygous recessive disorder. Affected have a homozygous genotype (rr) **Carriers** have a heterozygous genotype (Rr) but they are **NOT** affected

Sickle-Cell Anemia Effects: Extreme joint pain, blockages to capillaries

Tay-Sachs Also a homozygous recessive disorder. Affected have a genotype (tt) Carriers have a heterozygous genotype Tt)

- Tay-Sachs Disease
 - Cause
 - homozygous inherited autosomal recessives

- Effects (Lack enzyme to break down fatty acids
 - Fatty acids accumulate in the brain and effect central nervous system

Hemophilia Is a sex chromosome linked disorder Transmitted through mother Affected Boy has X^h Y genotype Carriers have a heterozygous genotype X^h X

- Hemophilia
 - Cause
 - Inherited recessive allele on the X chromosome

- Male to male inheritance is impossible
- Effects
 - Blood is not able to clot normally
 - Minor cuts could possibly lead to bleeding to death

Albinism Also a homozygous recessive disorder Affected have a (aa) genotype

- Albinism
 - Cause
 - homozygous inherited
 autosomal recessives

- Effects

 lack the enzyme to produce melanin

C-notes

• or enzyme that produces melanin is not functional

Down's Syndrome Caused by one extra chromosome in the 21st pair

Down's Syndrome Caused by nondisjunction of the 21st chromosome. •This means that the individual has a trisomy (3 – 2lst chromosomes).

- Dwarfism
 - Cause
 - Inherited dominant allele

- Effects
 - Stunted growth throughout lifespan